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1 Motivation and Introduction

Looking back at the short history of the modern film and video game industry, 3D modelers
take the labor modeling the 3D scene. The truly innovative part of this workflow is to
design the high-level scene (e.g. text description), create more expressive models, and adjust
the models to fit the scene better. However, 3D modelers might be burdened with the
heavy, repetitive, and tedious work of laying out the scene, which is less creative given a
fixed text description. What if we hire AI text-to-scene generators to take this burden and
leave the innovation to humans? Therefore, automatic scene generation could significantly
reduce the hands-on workload devoted to modeling massive 3D scenes in films and games.
Furthermore, this technique has the potential to provide massive scene-level synthetic data
for video diffusion training. Without precise control, existing video generation models like
Sora(Brooks et al., 2024) can struggle with generating accurate video scenes that align with
the prompt, especially for highly complicated yet abstract descriptions. Similarly, robot
learning also suffers from the lack of various physical scenes for reinforcement learning,
which could benefit from this automatic scene generation system. To this end, we plan
to propose a new text-to-scene generation pipeline that speeds up scene modeling and
empowers model training with infinite supervision data.

Basically, we aim to build a workflow where the users customize what scene to synthesize
via elaborate text descriptions. In the pipeline, Large Language Models (LLMs) lay out
a scene and determine what objects to import given a text input, while Vision Language
Models (VLMs) serve as the critics who provide layout revisions in the loop concerning
the object correctness, spatial relationship, and physical compliance. These constitute our
text-to-scene system. We also carefully design a comprehensive evaluation suite to assess
our system.

2 Related works

Text-to-scene generation using LLMs/VLMs is an emerging field that saw minimal explo-
ration prior to 2024. Here are some recent related works.

SceneCraft(Hu et al., 2024). One pioneering method SceneCraft(Hu et al., 2024) is based
on the dual-loop controlled generation. One loop is for scene generating and correctness
checking; the other is for detecting and caching frequently used Blender functions. However,
the method only uses a fixed set of human-made models, posing the limitation of object
diversity. Thanks to the power of text-to-3D diffusion models, we introduce more diverse
objects for scene generation. The SceneCraft method also suffers from a limited evaluation
suite, where it only evaluates the scene generation system under the CLIP score and a list of
human-written score functions. Designing the score functions involves human expertise
and labor, hard to generalize as a general text-to-scene system’s quality metric. Therefore,
here we introduce two new evaluation methods, one adapted from a former benchmark
ConceptMix(Wu et al., 2024) to assess the quality of a text-to-scene system in a more general
manner, one collecting human evaluators’ feedback. Additionally, SceneCraft does not
release the source code to public, so we partially reproduce the work in this project.

GALA3D(Zhou et al., 2024). The other work GALA3D(Zhou et al., 2024) generates the
layout by LLMs and further refines it by a Diffusion model(Ho et al., 2020). Nonetheless,
the overall system is compute-consuming, since it calls several Diffusion models locally to
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generate images and 3D objects and further refines the layout with the diffusion prior. In
this project, we only use the API of large generative models, so the system and experiments
can be directly run on a home PC.

Others. Other works about scene generation include BlenderGPT1(@gd3kr & @flipphillips,
2023), Infinigen(Raistrick et al., 2023; 2024). BlenderGPT introduces a GPT wrapper into
Blender workspace and does not fully automate the scene generation process, while In-
finigen is a procedure-based scene generation framework with no generative model par-
ticipated in it. The most recent works, such as SemanticSDS(Yang et al., 2024), the Scene
Language(Zhang et al., 2024), and SceneMotifCoder(Tam et al., 2024), significantly improve
scene generation quality and are more or less following the path of GALA3D.

3 Design & Implementation

3.1 Agent System Design
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Figure 1: The design of the text-to-scene agent system. Upon the input of the user prompt,
Unity requests the LLM agent to generate a JSON file following a certain format. Based
on the description of objects in the JSON file, we generate the 3D object models through
text-to-3D Diffusion models. Unity Engine further loads the scene from the JSON file in the
Unity environment and operates cameras to render multiple views of images. The critic
agent receives images along with the user prompt and tries to propose helpful suggestions.
A group of editor agents revise the JSON layout file one after another based on these
suggestions. The revision can be multiple steps or just two steps and can go through a
one-round loop or multiple rounds of loops.

As shown in Fig. 1, our text-to-scene system utilizes multi-agent collaboration via structured
files, natural language, and vision as information media. We further

For the initial scene layout generation, to utilize the powerful in-context learning abil-
ity(Brown et al., 2020) of Large Language Models (LLMs), we input the user prompt to an
LLM and ask it to generate a layout matching the user prompt formatted in a fixed JSON
structure.

To further introduce an in-the-loop reflection mechanism to this pipeline, we design a
critics and revision iteration framework in this system, which is inspired by the work from
Constitutional AI(Bai et al., 2022) and also the previous work SceneCraft(Hu et al., 2024).

1https://github.com/gd3kr/BlenderGPT
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Ideally, the loop aims to improve the scene generation quality iteratively. To be specific,
based on the guidance of the initial layout, we generate the related object models through
text-to-3D Diffusion APIs, place all the objects in a room, and render multi-view images
of the scene. Then, we ask Vision Language Models (VLMs) to look at the multi-view
images, read the user request, and provide criticisms or suggestions for improvement,
mostly on aligning the object existence with the user prompt. When the program receives
the suggestions, it asks another LLM agent to revise and edit the JSON layout file according
to them, including adding, deleting, and modifying objects. The LLM agent can also refer to
the user prompt in the revision process. The elaborately engineered prompt also consists of
rule-following requirements which will be introduced in the Implementation part.

We examine a nested revision agent illustrated in Fig. 1, which has five sub-agents taking
different parts of the revision. The first sub-agent is responsible for matching the object’s
existence with the user prompt or the suggestions. For example, if the prompt is ”the bed
with a nightstand”, then the scene should only show a bed and a nightstand aside. Any
missing objects (e.g., bed), redundant objects (e.g., lamp), or wrong objects (e.g., nightstand
→ table) would be fixed by sub-agent 1. The sub-agent 2’s task is to check whether the scales
of the objects are correct or not to avoid relatively too large or too small objects regarding the
scales of other objects, while sub-agent 3 and 4 work on adjusting the positions of floating
objects and overlapping objects. The sub-agent 5 finally focuses on correcting the format
errors in the JSON file.

From the experimental observations, we found the LLM and VLM’s visual reasoning ability
on spatial relation and physical compliance is far from effective. Thus, we incorporate a
handcrafted post-processing algorithm to adjust object positions, ensuring better compliance
with physical laws (e.g., avoiding overlap or objects floating in midair). The approach of
this post-processing is entirely procedural and does not rely on neural networks.

3.2 System Implementation

3.2.1 Base Models

In this project, we choose OpenAI GPT-4o and GPT-4o-mini (OpenAI, 2024) as the base
model for the LLM and VLM agents. We conduct experiments relying on both base models
respectively. At the time, these models are the strongest multimodal LLMs and have won
the leading place on many benchmarks. For the text-to-3D task, we choose to use Shap-
E (Jun & Nichol, 2023), which is a popular conditional 3D generative model with a free
and easy-to-use user interface. Users can input text or images to customize a 3D model
represented in mesh or NeRF format.

3.2.2 Dataset

Training or fine-tuning either a multimodal LLM or a 3D diffusion model is undoubtedly
compute-costly. Moreover, high-quality 3D data is largely proprietary and expensive
to purchase. Therefore, in this project, we directly use the pre-trained base models as
mentioned above without curating a dataset to train them. Instead, we choose to engineer
the prompt using handmade few-shot examples for each agent to activate their in-context
learning ability, because we believe the base models have already been strong enough to
be qualified for this task. As for the evaluation prompt dataset, we developed an LLM
evaluator that helps generate a list of random test prompts for evaluation use.

3.2.3 Process Control

As shown in Fig. 2, due to the cross-language and cross-platform nature of this system, we
designed an effective and efficient framework to control the processes of message transfer,
agent API handling, local file management, as well as text-to-scene workflow.

First, we ask the human user to input the prompt describing the desired scene, for example,

prompt = "An armchair beside a cabinet with a small fan on top."
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Figure 2: The process control framework of our text-to-3D system. Unity GUI collects
user prompts and sends a message requesting the agent for initial scene generation. This
communication is connected by a Python broker server using Flask web service, which
constantly listens to any messages from the Unity server. Then Unity end starts to listen
to the response and the Python end starts to complete the request. Upon task completion,
the Python server returns a signal to the Unity server, so that the latter process could
move forward. The Unity end goes through the loop of requesting suggestions and JSON
revision files, loading scenes, rendering images, and requesting again for N iterations. The
intermediate and final JSON files, criticisms, and renderings are all cached in the local file
system.

Once the user clicks the start button, the Unity server receives the prompt and sends a
generation request to the other process - this is where the Python broker server comes into
play, functioning as the bridge between the Python process and the Unity C# process. The
broker server uses the Flask Python package, a popular web application toolbox. The Python
process listens to the messages from the Unity process and starts to call the text-to-scene
agent API. When the initial scene JSON file is generated and saved to the local cache, the
Python process then generates 3D individual objects through Shap-E API. After finishing
these, the Python process returns a signal to the Unity process. When the Unity process
receives the signal, it does the next step - loading the scene into the Unity environment and
placing cameras to render multi-view images. After this, the Unity Engine requests the
Python process again. Python process calls agents to criticize and edit the scene JSON based
on the rendered images and user prompt. After this is completed, the Unity end again loads
and renders the updated scene, saving it to the local cache. Depending on the user setting,
the loop of requesting critics and revision, loading the scene, and rendering the multi-view
images, may iterate for a number of rounds.

3.2.4 Prompt Engineering

Since this is a multi-agent system, prompt engineering plays a vital role in terms of the
generation performance. Readers can check out the exact prompt examples which are
carefully designed for each agent (or sub-agent) in Appendix 7.2.

Generally, the system prompts consist of three main parts: the introduction of the task, a
bullet list of guidelines, and few-shot examples. The user prompts comprise scene-specific
intermediate information, e.g., the user prompt, the latest JSON file, scene images, and
critics’ suggestions. For the guidelines, we generally ask the model to generate a target scene
where the objects are reasonably selected, placed, and scaled. We also ask it to generate a
JSON file that follows a certain format as below. We also add the few-shot example at the
end of the prompt to best trigger the in-context learning ability of current large language
models, an ability found in the former work Brown et al. (2020).
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[JSON format]
{

"scene": "<scene name>",
"scene_description": "<scene description>",
"objects": [

{
"name": "<object 1>",
"description": "<description of it>",
"scalar": <the scale relative to the original model>,
"bounding_box": {

"x_min": <minimal x of its bounding box>,
"x_max": <maximal x of its bounding box>,
"y_min": <minimal y of its bounding box>,
"y_max": <maximal y of its bounding box>,
"z_min": <minimal z of its bounding box>,
"z_max": <maximal z of its bounding box>,
"rotation": <rotation angle>

}
},
...
... # <more objects>
...

]
}

4 Evaluation & Results

4.1 Evaluation Metrics
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Figure 3: The proposed evaluation metrics and workflow for the text-to-3D system. We
mainly adopt three evaluation metrics, i.e., the CLIP score, Human ratings, and ConceptMix
accuracy (Wu et al., 2024). The last method is adapted from the ConceptMix benchmark (Wu
et al., 2024) which benchmarks the text-to-image system’s ability to generate compositional
content following the text prompt. These metrics individually stress on different aspects of
scene generation quality, thus together forming a comprehensive text-to-scene evaluation
system.

In Fig. 3, we show the overview of the evaluation suite for the text-to-scene task. In the
experiments, the CLIP score, human ratings, and ConceptMix accuracy (Wu et al., 2024) are
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used. We employ these metrics because they assess the scene generation quality through
different views. The following is the detailed explanation of evaluation system design.

First, we curate a pre-defined objects pool, which contains the names of about 25 common-
place indoor objects, e.g., ”table”, ”chair”, etc., as shown on the left side of Fig. 3. Here
comes the first evaluation agent, who refers to the object pool and generates a set of prompts
(around 20). Iteratively, the prompts are fed to the target text-to-scene system to generate
the scene and output rendered images. Using the scene prompt together with images we
got, CLIP model and human evaluators can rate the (text, images) pairs from (-1, 1) and (0,
5) respectively.

4.1.1 CLIP Score for General Object Existence

For CLIP model (Radford et al., 2021), it is a cross-modal (vision-language) alignment
algorithm. People tend to compute the cosine similarity value between the visual latent
vector and the language latent vector, both from the CLIP model, and call it the ”CLIP
score”. The CLIP score indicates that the higher the CLIP score, the more similar the input
text and image are. Since there are multiple views, for example, in this project we take 4
multi-view images, so we have 4 CLIP scores in total. Choose the maximal value among
these 4 values to return. The reason is that there might be occlusions in some views caused
by large objects, so simply selecting the highest CLIP score may automatically solve the
trouble of occlusion. In general, the CLIP score focuses on the general existence of objects
and general text-to-scene satisfaction.

4.1.2 ConceptMix Accuracy for Certain Object Existence and Spatial Relationship

The ConceptMix (Wu et al., 2024) approach goes through more steps. As in Fig. 3, based on
the prompts, the second evaluator agent creates a list of questions (n =5) for each prompt
checking the existence of a certain object or the fact of spatial relation presented in the
prompt. Next, the third evaluator with vision ability watches the scene and gives answers
to these questions, expected to be simply ”yes” or ”no” after the Chain-of-Thought (CoT)
reasoning (Wei et al., 2023). The answers are compared with the ground truth to compute
the prediction accuracy. This is a pipeline adapted from the ConceptMix benchmark (mostly
the second stage), so we call this ”ConceptMix accuracy”.

This metric mainly examines the existence of certain objects and their spatial relationship.
Here is an example of a generated prompt with questions and ground-truth answers
prepared for evaluation.

[Example: Evaluation Questions with Ground Truth Answers]
{

"prompt": "A computer chair facing a Desk with a plant and fan atop.",
"questions":[

"Is there a computer chair?",
"Is the chair facing a desk?",
"Is there a plant on the desk?",
"Is there a fan on the desk?",
"Does the scene contain any other objects except the desk,

plant, fan, and computer chair?"
],
"ground_truth":[

"yes",
"yes",
"yes",
"yes",
"no"

]
}
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4.1.3 Human Evaluation for Physical Compliance

We assembled human participants (n=2) to join the user study. They are asked to follow
these grading guidelines, which implies that the human evaluation metric focuses broadly
on almost every part that makes a scene. What makes this metric unique is its stress on
physical compliance, while the other metrics do not.

[Grading Guidelines]

1. Give 5 points if the scene exactly matches the prompt.
a. No missing or redundant objects;
b. correct spatial relationship;
c. proper scaling;
d. compliance with physical laws.

2. Deduct 1 point for:
a. Each case of object wrong, missing, or redundant
b. Each case of wrong spatial relationship

(e.g. not in the corner, not on top of the other object,
not nearby, etc.)

c. Each case of object overlapping or flying.
d. Obvious scale mismatching (e.g. too big or too small objects)

4.2 Experiment Setups

In this project, we take a look at how the following variables affect the performance of this
system both quantitatively and qualitatively.

a. Base model selection. We choose GPT-4o and GPT-4o-mini as two base models for
comparison. The former is a strong model while the latter is relatively weaker.

b. Revision methods. As depicted in Fig. 1, we design a strong revision agent and a weak
revision agent. a weak revision agent only adds, deletes, or changes the objects, while the
strong revision agent additionally takes the responsibility of rescaling too large or too small
objects and adjusting overlapping or floating objects.

c. Revision rounds. As illustrated in Fig. 1, the revision mechanism supports multiple
rounds of iteration. We try iteration numbers N=1 and N=2 respectively.

d. Baseline comparison. Since text-to-scene generation is a new research direction, the
public code source for recent text-to-scene work, such as SceneCraft and GALA3D, has
neither been well released nor well maintained. Therefore, for qualitative analysis, we
choose one of the state-of-the-art text-to-image models, DALL·E 3 (Betker et al.), as a
baseline for comparison. The evaluation metrics are compatible with images as well. To
examine how these evaluation metrics work, we also add a fully blind model for reference,
which only generates blank scenes and renders blank images.

For fairness, all the above experiments start from the same prompt set and question set
generated by language models.

4.3 Result Analysis

4.3.1 Quantitative Analysis

Table 4.3.1 shows the quantitative results, where we have some interesting findings.

a. The revision mechanism is more beneficial to a weaker base model than to a stronger
one. When we use a weaker base model, like GPT-4o-mini, the initial generation quality is
relatively lower. In this case, the revision mechanism greatly improves the layout quality,
e.g. raising CLIP score from 0.255 to 0.271 and Human Score from 3.5 to 4.8. However, for a
stronger base model, like GPT-4o, the initial layout performance can be already satisfying
enough, with a ConceptMix Accuracy as high as around 90% and human scores as high as
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Metrics Model GPT-4o GPT-4o GPT-4o GPT-4o-mini DALLE3 Blind
Revision weak weak strong weak
Iteration 2 1 1 1

ConceptM Initial 0.861 0.899 0.899 0.848 0.683 0.538
↑ Revised 0.949 0.924 0.772 0.886

CLIP Scor Initial 0.253 0.254 0.26 0.255 0.257 0.137
↑ Revised 0.257 0.262 0.265 0.271

Human E Initial 4.4 4.8 4 3.5 3.6 0
↑ Revised 4.9 4.6 3.9 4.8

Table 1: Quantitative evaluation results.

4.8 out of 5. Therefore, the revision process only contribute moderately to the layout quality
improvement.

b. Too much steps of revision within one iteration hurt the layout quality greatly. When
we use the ”strong” revision mode, which involves up to 5 agents (as shown in Fig. 1)
additionally editing the mis-scaled, overlapped and floating objects one after another, the
revised version is proved to have lower quality than the initial layout. For example, the
ConceptMix value drops from 0.899 to 0.772, compared with the ”weak” revision result
which raises this value from 0.899 to 0.924. As to the reasons of this phenomena, we guess it
is because current language models are not able to handle the physical and mathematical
relationship between bounding boxes, such that it just follows the instruction of editing the
JSON file recklessly without realizing it messes up the original layout.

c. Under weak revision mode, two times of critics & revisions outperform one-time
revision. Two-time revisions uplift the ConceptMix score from 0.861 to 0.949, while the one-
time loop raises the score from 0.899 to 0.924. Similarly, we note that the human raters also
give higher scores to the second-revision results compared with the first revision. However,
the CLIP scores do not differ much for both experiments.

d. Our method works better than the text-to-image model DALL-E 3. The system’s
ConceptMix accuracy is higher than that of DALL-E 3 by a huge percentage gap, greater
than 16%. Although the CLIP scores of the initial layout are mostly the same as DALL-E 3
(around 0.257), the revised version can lift the score up to 0.271. As for the human rating,
DALL-E’s performance is close to GPT-4o-mini’s initial layout performance, not comparable
with GPT-4o.

e. The metrics are effective and 3.6 , beatennot dominated by noise. Comparing the
text-to-scene system and blind model’s performance, we can preliminarily tell that the
metrics in this project are effectively implemented and are robust against visual noise.

4.3.2 Qualitative Analysis

As displayed in the comparative figures from Fig. 4 to Fig. 7, the DALL-E 3 model can
generate correct objects mentioned in the prompt, but it fails to exclude the not-mentioned
objects, leading to many redundant objects presented in the image. In contrast, due to the
reflection process and carefully designed prompts, our system can generate more precise
object-level layouts.

Nonetheless, a shortcoming can be found in our system that, as shown in Fig. 5, the Teddy
bear is floating in the air above the bed, while it seamlessly sits on the bed in DALL-E’s
result, which is more natural and physically compliant. We argue that it is because we use
the bounding box representation for all the generation steps. Therefore, language agents
are not able to reason about the bed mattress’s height since there is no such information
provided. This shortage points out a future direction for improvement.
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Figure 4: An example. (Left) Generation from our text-to-scene system. (Right) Generation
from DALL-E 3. Prompt: A coffee table with a toy car and a cup on top, next to a sofa.

Figure 5: An example. (Left) Generation from our text-to-scene system. (Right) Generation
from DALL-E 3. Prompt: A teddybear sitting on a bed beside a nightstand.

Figure 6: An example. (Left) Generation from our text-to-scene system. (Right) Generation
from DALL-E 3. Prompt: A rug under a table with a cup on it and a chair.
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Figure 7: An example. (Left) Generation from our text-to-scene system. (Right) Generation
from DALL-E 3. Prompt: A computer chair facing a Desk with a plant and fan atop.

5 Discussion

5.1 Strength of the system

In the context of text-to-scene generation,

1. Generally, our system can generate effective scene layouts and render multi-view images
from text descriptions effectively at a reasonable speed.

2. The layout from our system precisely matches the text description with correct object
selection and spatial relation.

3. The system is inference-time scalable. The more critics & revision iterations, the better
scene generation quality it reaches.

4. The system is especially suitable for small and light-weight base models which can greatly
benefit from the reflection mechanism. Therefore, the generation process can be accelerated
by using light models.

5. We propose a suite of evaluation metrics that comprehensively assesses the text-to-scene
performance w.r.t. the object existence, spatial relation, and physical compliance.

5.2 Weakness of the system and future work

The work starts off from the assumption that objects can be represented by bounding boxes.
This causes inaccurate spatial relations and floating issues. Therefore, future work can
focus on introducing a more generalizable representation considering the objects’ diverse
geometry.

Additionally, it is universally known that language models lack physical reasoning and
spatial reasoning abilities, while this system entirely stems from the response of vision
language models. It has to go through manually designed post-processing procedures,
which highly restricts its generalization to new domains such as out-door scenes and
scenes with deformable objects. In the future, we hope such LLM/VLM abilities could be
strengthened.
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7 Appendix

7.1 JSON file Example

Listing 1 is an example JSON file in a format we defined as the scene language in this project.
The prompt for this layout is ”An armchair beside a cabinet with a small fan on top.”

Listing 1: An example of the JSON format (Prompt: ”An armchair beside a cabinet with a
small fan on top.”)

1 {
2 "scene": "a cozy reading nook",
3 "scene_description": "This reading nook is designed for comfort and

relaxation , featuring warm color palettes with soft textures.
Ambient lighting enhances the inviting atmosphere , while natural
light filters through nearby windows , creating gentle contrasts
on the furnishings. The walls are adorned with subtle patterns ,
shared by an oversized armchair that invites you to sink into its
deep cushions. A functional yet stylish cabinet stands nearby ,

exhibiting an organized and decluttered aesthetic , and a small
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fan rests neatly atop it, providing comfort during warmer days.
The overall layout encourages one to unwind with a good book or
simply enjoy the tranquility of the space.",

4 "objects": [
5 {
6 "name": "armchair",
7 "description": "An oversized armchair upholstered in rich ,

textured fabric that adds to its plush comfort. It
features wide armrests and a high back , providing
ergonomic support. The fabric is in a warm tone that
complements the cozy theme , while the legs are made of
smooth , polished wood , adding an elegant contrast.",

8 "scalar": 1.0,
9 "bounding_box": {

10 "x_min": 1.0,
11 "x_max": 2.83,
12 "y_min": 0,
13 "y_max": 1.98,
14 "z_min": 1.5,
15 "z_max": 3.28,
16 "rotation": 0
17 }
18 },
19 {
20 "name": "cabinet",
21 "description": "A sleek cabinet made of dark , rich wood ,

showcasing clean lines and a minimalist design. The
cabinet offers several compartments for storage and
features subtle hardware that adds a touch of
sophistication. Its surface is smooth and spacious ,
perfect for displaying decorative items.",

22 "scalar": 1.0,
23 "bounding_box": {
24 "x_min": 3.5,
25 "x_max": 4.6,
26 "y_min": 0,
27 "y_max": 1.98,
28 "z_min": 1.5,
29 "z_max": 2.0,
30 "rotation": 0
31 }
32 },
33 {
34 "name": "fan",
35 "description": "A compact table fan designed for portability

and efficient cooling. It features a durable base with
adjustable height and a sleek , modern design. Its blades
are encased in a protective grill , and the fan is
finished in a neutral color that integrates well into the
cabinet setting.",

36 "scalar": 1.0,
37 "bounding_box": {
38 "x_min": 3.76,
39 "x_max": 4.3,
40 "y_min": 1.58,
41 "y_max": 2.5,
42 "z_min": 1.65,
43 "z_max": 1.89,
44 "rotation": 0
45 }
46 }
47 ]
48 }
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7.2 Prompt Examples

Listing 2 is the prompt for the initial text-to-scene agent.

Listing 2: prompt for the initial text-to-scene agent

1 ############## Prompt for the initial text -to-scene agent ###############
2

3 system_prompt = (
4 "Act as a 3D scene creation tool helper and I need to create a 3D

view layout for a scene as a json given a text prompt description
. When I give a prompt , write a detailed description of how the
room would look without referencing specific objects but describe
the overall theme or visual texture and style of the room. Then

create a list of up to 5 objects in that scene , a description of
each object in visual and textual detail so if I used a text -to -3
D object model it would generate it, and generate a room layout
with coordinate bounding boxes for each object. Make this into a
JSON format and only return the JSON. "

5 "\n\nEnsure these guidelines are followed: "
6 "(1) from the perspective of the camera , x axis is rightward , y axis

is upward , z axis is the further direction to the camera. "
7 "(2) We will provide you with a model zoo , from which you can select

the objects and look up their 3D sizes. Please only select the
object from the model zoo. Rescale each model uniformly with a
scalar value applied to x/y/z sizes to make the size of bounding
box match with the size in the real world. In the JSON , the size
of bounding box should be scalar times the size in the model zoo
provided , just like the example below. "

8 "(3) Give a rotation direction of the bounding box for which way it
is facing in degrees where 0 degrees is facing forward and 90
degrees is facing left. "

9 "(4) Make sure the name of the object is from the model zoo we
provide you as below. Do not change the name of objects (keep
lowercase and one word). "

10 f"(5) Make sure the bounding boxes are in the room. The room itself
is within the range of [0, {ROOM_SCALE }] x [0, {ROOM_SCALE }] x
[0, {ROOM_SCALE }]."

11 "(6) Try to make sure the layout of the scene is very realistic and
objects should not be placed in a strange way. "

12 "(7) Make sure the layout is aesthetically pleasing. "
13 "(8) Do not generate objects that would be underneath other objects

or on walls such as rugs or windows. "
14 "(9) Object bounding boxes should not be scaled inaccurately and

should not be unrealistically far or close from each other. "
15 "(10) Make sure no bounding boxes overlap each other."
16 "(11) Make sure the spatial relationship between objects is

reasonable , like lamp on the table , instead of on the floor ,
nightstand close to one side of the bed , not at a strange
isolated place. Do not place objects above a sofa , bed , chair ,
couch , and plant."

17 "\n\nYour reward is based on the quality of the generated JSON. You
will be given $20 for each reasonable and natural layout."

18 "\n\nThe model zoo: " + f"{object_zoo}"
19 "\n\nFor example: you may output your response in the following

format: \n"
20 "{ \"scene \": \"a cozy living room\", \" scene_description \": "
21 "\"The living room embodies a warm and welcoming atmosphere ,

focusing on comfort and relaxation. The room showcases a
harmonious blend of earthy tones and soft textures , with
wooden accents and plush fabric elements. Natural light
filters in softly , casting gentle shadows on the flooring ,
enhanced by rich , inviting colors that create a sense of
tranquility. The layout is open and airy , encouraging
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movement and interaction while maintaining an intimate feel
.\", "

22 "\" objects \": [ "
23 "{ \"name \": \" nightstand \", "
24 "\" description \": "
25 "\"A stylish nightstand made of warm , dark wood with clean lines

and a smooth finish. A single drawer provides discreet
storage , while the top surface is spacious enough to
accommodate decor items or a lamp. Its design complements the
cozy theme of the room.\", "

26 "\" scalar \": 2, "
27 "\" bounding_box \": { \"x_min \": 2.00, \"x_max \": 3.54, \"y_min \": 0,

\"y_max \": 1.68, \"z_min \": 1.84, \"z_max \": 3.00, \" rotation \":
0 } "

28 "}, "
29 "{ \"name \": \"lamp\", "
30 "\" description \": "
31 "\"A tall , elegant floor lamp with a slim base and a fabric shade

that diffuses light softly. The base is a brushed brass
finish , offering a touch of modernity , while the shade is in
a light linen color , harmonizing beautifully with the
surrounding decor.\", "

32 "\" scalar \": 2, "
33 "\" bounding_box \": { \"x_min \": 2.12, \"x_max \": 2.74, \"y_min \":

1.68, \"y_max \": 3.58, \"z_min \": 2.40, \"z_max \": 2.88, \"
rotation \": 0 } "

34 "}, ...] }"
35 )
36

37 user_prompt = f"{User's Prompt}"

Listing 3 is the prompt for the scene criticism agent.

Listing 3: prompt for the scene criticism agent
1 ################ Prompt for the scene criticism agent ################
2

3 system_prompt = (
4 "Act as a scene layout critic. Given the user's prompt and the

generated photos , which are the multi -view appearance of the
generated scene. Do you have any suggestions for making the
layout match the user prompt? Are any objects in the scene
missing or not in need according to the prompt?"

5 "\n\nThe suggestions are expected to be operations including adding
and deleting objects. "

6 "\n\nFor example , "
7 "\n- add <X object >"
8 "\nand/or"
9 "\n- delete <Y object >"

10 "\nor"
11 "\n- no issues"
12 "\n\nNote: "
13 "\n(1) Please do not add objects that are not mentioned in the prompt

. Make sure after revised according to your suggestion , the scene
has all the objects mentioned in the prompt and do not have

objects that is not mentioned in the prompt."
14 "\n(2) It is very possible that you do not need to give any

suggestions. If you think the layout is perfect , you can just say
\"No issues \"."

15 "\n(3) Your reward is based on the correctness of your suggestions.
You will be given $20 for each correct suggestions."

16 )
17

18 user_prompt = [
19 {
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20 "type": "text",
21 "text": f"User's prompt: {User's Prompt}",
22 }] + [
23 {
24 "type": "image_url",
25 "image_url": {
26 "url": f"data:image/jpeg;base64 ,{ encode_image(image_path)}",
27 "detail": QLT ,
28 },
29 } for image_path in image_paths
30 ],

Listing 4 is the prompt for the scene revision sub-agent 1.

Listing 4: prompt for the scene revision sub-agent 1
1 ############## Prompt for the scene revision sub -agent 1 ###############
2

3 system_prompt = (
4 "Act as a indoor scene layout editor. You help to revise the "
5 "scene layout based on the suggestions from the critic. The "
6 "critic has given suggestions on how to improve the generated "
7 "scene to better fit the user's requirements (user's prompt). "
8 "The user will provide you with the scene prompt , suggestions"
9 ", and the original JSON script which includes the description "

10 "and the bounding boxes of all the objects , etc. Your task is to "
11 "edit the JSON file based on the suggestions from the critic. "
12 "\n\nNotes: "
13 "(1) In the 3D world , x axis is rightward , y axis is upward , z axis

is the further direction to the camera. "
14 "(2) If you are suggested to add objects , choose objects from the

object zoo below. The object name should be exactly the same! You
can give it a scalar. The size of its bounding box should be

scalar times the size in the model zoo provided."
15 "(3) Do not add or remove objects that are not mentioned in the

suggestion. "
16 "(4) Do NOT move or rescale original objects."
17 "(5) Try to avoid collision or overlap of the bounding boxes when you

add the object. "
18 f"(6) The room itself ranges within [0, {ROOM_SCALE }] x [0, {

ROOM_SCALE }] x [0, {ROOM_SCALE }]. Make sure the bounding boxes
are in the room."

19 "(7) Only output the new JSON , which is the edited version of the
original JSON. "

20 "(8) If there is no issue from critics and you also think the json
matches the prompt , it is ok to return the JSON with no revision.
"

21 "\n\nSome other minor issues:"
22 "(1) Make sure the spatial relationship of the added object is

reasonable. Do not place objects above a sofa , bed , chair , couch ,
or plant."

23 "(2) Try to make sure the layout of the scene is very realistic and
objects should not be placed in a strange way. Try to make the
layout aesthetically pleasing. "

24 "(3) New object 's bounding boxes should not be scaled inaccurately
and should not be unrealistically far or close from each other. "

25 "(4) Do not place new objects that would be underneath other objects
or on walls such as rugs or windows. "

26 "\n\nThe model zoo for your reference: " + f"{object_zoo}"
27 "\n\nNote that your reward is based on the correctness of your

revisions according to prompts and suggestions. You will be given
$20 for each correct revision."

28 )
29

30 user_prompt = f"User's prompt: {User's Prompt}"
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31 + "\n\nCritics ' Suggestion: {suggestions}"
32 + "\n\nOriginal JSON: {json_data}"

Following are the prompts for the scene revision sub-agents 2 to 5.

Listing 5: prompts for the scene revision sub-agents 2 to 5
1 ############ Prompts for the scene revision sub -agent 2-5 #############
2

3 criteria = []
4 # use sub -agent 2,3,4 if enabled strong revision
5 if enable_strong_revision:
6 criteria += [(
7 f"check and rescale the bounding boxes of objects to match "
8 "the mesh size in the model zoo according to the object 's "
9 "scalar. This means , the size of each bounding box (i.e., "

10 "max - min) should be the object 's scalar value times its "
11 "size in the model zoo. For example , if an object 's size "
12 "is 1.5 times the mesh size (scalar =1.5), and its y_size "
13 "in the model zoo is 0.8, then for this object , (y_max - "
14 "y_min) in the original json file should be 1.5 * 0.8 = "
15 "1.2. If not match , please rescale the bounding box to "
16 "match the size in the model zoo in terms of the scalar. "
17 f"For your reference , here is the model zoo: {object_zoo}"
18 ),
19 (
20 "Avoid any object bounding box flying in the air. Objects "
21 "might fall on the ground or pile up."
22 ),
23 (
24 "edit the location of objects so that the bounding boxes "
25 "NOT overlap with each other. If they do, move bounding "
26 "boxes along X and/or Z axis to avoid overlap. No change "
27 "on y axis. Note that the object 's bounding box should be "
28 f"in the room. The room ranges within [0, {ROOM_SCALE }] x "
29 f"[0, {ROOM_SCALE }] x [0, {ROOM_SCALE }].\n\nPlease ONLY "
30 "move the whole bounding box and keep the size unchanged."
31 )
32 ]
33 # use sub -agent 5 under both strong and weak conditions
34 criteria += [
35 (
36 "focus only on object names. Make sure the name string "
37 "exactly match the object 's name found in this list "
38 f"{list(object_zoo.keys())}. Otherwise we cannot match "
39 "with the file name)"
40 )
41 ]
42 for criterion in criteria:
43 contents = [
44 (
45 "Act as a indoor scene layout editor. "
46 "You help to correct the errors in a JSON formatted

scene layout. "
47 "The user will provide you with the original JSON

script which includes the description and the
bounding boxes of all the 3D objects. "

48 "Help user to correct the data in the JSON. Only
output the new JSON , which is the edited version
of the original JSON. "

49 "\n\nPlease only focus on the following task: Your "
50 f"task is to {criterion }. Do NOT edit other parts "
51 "unrelated to the task! "
52 ),
53 (
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54 "Although you are expected to focus only on the "
55 "above task , it would be good to keep in mind that "
56 "the final scene should match this user's prompt: "
57 f"{user_prompt }."
58 ) if enable_strong_revision else "",
59 (
60 "\n\nNote that your reward is based on the

correctness of your revisions according to the
specific task above. You will be given $20 for
each correct revision."

61 )
62 ]
63 contents = "".join(contents)
64

65 user_prompt = f"Original JSON: {Latest JSON File}",

Listing 6 are the prompts for the evaluator agent to generate a list of random test prompts.

Listing 6: prompts for the evaluator agent to generate a list of random test prompts
1 system_prompt = (
2 "Act as a scene generation evaluator. Help the user generate a list

of prompts for a scene layout generation task. In the user prompt
, you will be given the number of prompts you need to generate
and the object zoo from which you can select the objects to make
up you prompts. Please select no more than 5 objects for each
prompt. And make sure the prompts are clear , concise and natural.
"

3 "\nFor example , if you choose \" table\", \"chair\", \"sofa\" from the
object zoo , an example prompt might be \"A table with a chair in
front of it (or behind it) and a sofa beside it.\" Please

generate the prompts in json format as a list of strings. Please
ONLY return the json content. "

4 "\nExample: [\"A table with a chair in front of it (or behind it) and
a sofa beside it.\", \"A book and a lamp are on a table.\", ...]

"
5 )
6

7 user_prompt = (
8 f"Generate {num} prompts from the object zoo of " + f"{object_zoo}" +

"."
9 )

Listing 7 are the prompts for the evaluator agent to generate a list of question sets following
the ConceptMix approach.

Listing 7: prompts for the evaluator agent to generate a list of question sets
1 system_prompt = (
2 "Act as a scene generation evaluator. Help the user generate a list

of short questions for a scene layout evaluation task. You will
be given a list of user prompts , for each prompt , please generate
no more than 5 questions asking about whether the scene matches

this text prompt. You can consider to ask the existence of a
certain object in the scene or the spatial relationship between
objects. The answers to these questions should be simply \"yes\"
or \"no\". If the scene does exactly match the prompt , the
question should be expected to have the \"yes\" answer. "

3 "For example , if the prompt is \"a table with a plant on it and a
chair nearby .\", example questions might be \n\"Does the scene
contain a chair?\", \"Is there a plant on the table ?\", etc.
Please generate the prompts in the following json format. Please
ONLY return the json content. "

4 "Format example: \n{\" questions \": [[\"< question 1 for prompt 1>\",
\"<question 2 for prompt 1>\", ...], [\"< question 1 for prompt
2>\", \"<question 2 for prompt 2>\", ...], ...] } "
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5 )
6

7 user_prompt = f"Scene prompts: {prompts[i:i+split_len ]}."

Listing 8 are the prompts for the evaluator agent to answer the generated questions looking
at the rendered scene images.

Listing 8: prompts for the evaluator agent to answer the generated questions
1 system_prompt = (
2 "Act as a scene generation evaluator. Help me answer a list of short

questions for a scene layout evaluation task. You will be given a
list of questions and some multiple -view images for the same

scene , according to the image content , please answer each
question with \"yes\" or \"no\". Please answer each question in
the order they are asked. Please pack your response in the
following json format. Please ONLY return the json content. "

3 "Format example: \n{\" reasons \": [\"< reason for question 1>\", \"<
reason for question 2>\", ...], \" answers \": [\"yes\", \"no\", \"
yes\", ...]} "

4 )
5

6 user_prompt = [
7 {
8 "type": "text",
9 "text": f"Evaluation questions :\n-" + "\n-".join(questions),

10 }] + [
11 {
12 "type": "image_url",
13 "image_url": {
14 "url": f"data:image/jpeg;base64 ,{ encode_image(image_path)}",
15 "detail": QLT ,
16 },
17 } for image_path in image_paths
18 ]
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